Layer 1 security with the Nokia 1830 Series Optical Platforms
Once considered unhackable, optical networks have proven they are not immune to security breaches. Indeed, security breaches are growing at an alarming rate with roughly 44 records lost or stolen every second. Enterprises and network operators must look to secure business-critical information, including data at rest and in-flight. Establishing effective Layer 1 encryption and key management is a critical component to an overall defense-in-depth strategy that protects business-critical data and lowers the cost of ongoing security management.
Multi-layered defense-in-depth strategy provides greater security
Breaches represent a serious financial risk

Since 2013, it is estimated that enterprises worldwide have had more than 5.3 billion data records lost or stolen as a result of security breaches. This translates into about 44 records every second. Of these breaches, only about 4 percent were “safe breaches” where the records were encrypted rendering the stolen information useless.

A recent study by the Ponemon Institute analyzing breaches by industry estimated that the average global cost of a data breach per lost or stolen record in 2016 was US$158. However, the cost of data breaches varies by industry.

Healthcare organizations averaged $355 per lost or stolen record while education averaged $246. Transportation followed at $129 with research at $112 while the public sector at $80 had the lowest average of all.

Regulated industries, such as healthcare and financial services, have the most costly data breaches. That’s due to fines and the higher than average rate of lost business and customers. In 2016, the average cost per incident was $4 million. Organizations recognize that the longer it takes to detect and contain a data breach the more costly it becomes to resolve.

What does this mean for data security?

Enterprises and network operators need to strengthen security to minimize the risk of loss or breach of sensitive data. Because data is distributed well beyond the organization’s boundaries, network firewalls and other network perimeter technologies are not sufficient in today’s environment. These tools must be supplemented by technologies that protect the data itself, particularly when it is in-flight traversing the network. This means ensuring that data confidentiality and integrity are preserved and that the network is highly available and reliable.

The security strategy should include the coordinated use of multiple security countermeasures to protect the integrity of the enterprise’s information assets. By using a multi-layered defense approach as shown in Figure 1, this defense-in-depth strategy offers a higher level of security for all data.

With this strategy, organizations can more effectively protect themselves from data breaches while minimizing their impact. The Nokia 1830 Photonic Service Switch (PSS) and the 1830 Security Management Server (SMS) are ideal for this role, providing security features at the physical layer (Layer 1).
Layer 1 security as part of the overall security strategy
As part of the broader security strategy, Layer 1 security encryption and protection delivers important benefits:

• Reduced cost: Encryption at the higher network layers is costly because many security appliances are needed to protect each data stream, service protocol, and client. Data encryption at Layer 1 reduces the cost per encrypted bit by integrating the encryption function in the transport system.

• Lower latency: Layer 1 encryption yields better latency performance. Higher-layer encryption technologies add significant overhead and multiply the latency of the data stream whereas Layer 1 encryption adds almost no additional latency (less than 150 nanoseconds) to the transport process. This makes it highly suitable for low latency, business-critical applications.

• Transparency: Layer 1 encryption is protocol agnostic, which means that the network can offer the flexibility to support a variety of client and transport interfaces for both current and future services.

• Improved performance: Hardware-based Layer 1 encryption solutions support very high bandwidth with encryption of 10/100 Gbps wire speeds and higher. This provides the scale needed to support current and future services.

• High availability: Mission-critical data must be accessible to its rightful owners. The network must be highly available and reliable. By supporting optical span protection, the Nokia Secure Optical Transport solution avoids network disruptions in response to attacks.

• Management: Layer 1 encryption simplifies security and network management. Key management, exchange, and authentication can be labor-intensive and cumbersome when there are many separate encryption devices and encryption streams to manage. But with Layer 1 encryption, only one encrypted circuit needs to be managed as compared to many IPSec tunnels.

As part of the holistic Secure Optical Transport solution, the Nokia 1830 PSS supports 10G and 100G encryption modules providing per channel Advanced Encryption Standard (AES) 256 encryption. These cards leverage strong symmetric keys generated by the Nokia 1830 SMS as part of the encryption/decryption process. Up to ten independent multi-rate 10G channels or encryption of 100G channels are supported in a single module. Benefiting from the service transparency of Layer 1 encryption, the module supports multiple client interfaces including 8G/10G/16G fiber channel and 10GE/40GE/100GE Gigabit Ethernet.

Figure 2. Why Layer 1 security
Secure Optical Transport

Key strength and the illusion of security
Cryptographic algorithms are considered “strong” not because they are mathematically impossible to break, but because they are computationally prohibitive. The longer it takes to decrypt a message without knowing the key, the stronger an algorithm is considered to be. In fact, an algorithm could take so much time to break, it would be far too costly a task. Moreover, if an attacker takes years to decrypt an encoded message, breaking the code would not be worth it. The information would probably have become irrelevant and stale.

Unbalanced crypto solutions marketed as AES-256 compliant may give the illusion of having 256-bit security strength when in reality they are not because they use weak keys. There is a traditional trade-off between the strength of encryption and its impact on system performance that has led to the practice of using the minimum strength necessary to affect performance as little as possible. Asymmetric key negotiation providing 256-bit security key strength (e.g. RSA 15360) is computationally intensive and as a result, many vendors have chosen asymmetric key negotiation that better fits their control plane processing power (e.g. RSA 2048) hence resulting in substantially weaker security key strength having only 112-bit strength.

This makes it important to match key strength to the encryption algorithm’s strength. That’s because the overall solution will only be as strong as the weaker of the two—just as the locks in a house are only as good as the weakest one. For this reason, a “top secret” security standard requiring 256 bit strength should use an AES-256 algorithm with 256 bit key size.

The Nokia 1830 SMS provides key management of strong AES-256 keys. The server also interoperates with the 1830 PSS providing AES-256 encryption to meet the most stringent security requirements.
Centralized key management
To be most effective, key management should be managed centrally across the enterprise or network. Centralization offers the following benefits:
• **Single point of trust:** Centralized key management limits the number of locations in which keys reside, minimizing the potential for exposure.
• **Consistent policy enforcement:** Centralized key management enables administrators to enforce standards and policies consistently across the network.
• **Better encryption and scale:** Centralized key management enables the creation of keys by the central key manager so they can be sent securely for “off-board” encryption/decryption. This frees up host CPU capacity on the hardware security module and allows the use of stronger, more complex keys. This approach is especially beneficial when large amounts of data need to be encrypted/decrypted.

• **Streamlined administration:** Centralized key management streamlines administration by allowing updates to be made once (centrally) and cascaded automatically across the network. For example, this enables single-point key revocation and one point to force multi-tenant, synchronized key rotations.
• **Unified auditing and remediation:** Centralized key management simplifies network security audits, facilitates policy compliance, and streamlines remediation through the use of audit logs containing all key-related activities. These logs can be analyzed enabling preventative measures to be continually improved.

The Nokia 1830 SMS supports centralized key management for the entire cryptographic life cycle of each encrypted wavelength service.
Importance of independent validation

Customers want confidence that the products they purchase and use will meet their security requirements. Product vendors may assert that they include cryptographic features in their products that are designed to meet industry standards and that they employ secure development practices. However, without independent certification, the level of assurance customers get from vendor assertions depends on vendor trustworthiness.

Independent confirmation of vendor claims by third-party validations can give customers greater confidence. Customers can gain even more confidence, if independent, third-party validations are performed using open, international standards where products are “certified to meet” these standards. Benefits of third-party validations include:

• **Higher confidence**: Examination against recognized industry standard metrics and criteria give customers higher confidence that the measures are relevant and complete.
• **Consistent results**: Standardized validation methods help to guarantee consistent, unbiased results.
• **Credibility**: The credibility of the third party is the basis for trusting results. Third parties that use open processes for standards development and publication of results achieve the broadest credibility.
Regulatory compliance
Federal agencies and government contractors demand custom-developed enterprise and mobile applications for a diverse set of mission needs. Information security is always among the top requirements. Any federal information systems that need to meet the requirements of the Federal Information Security Management Act (FISMA) that did away with waivers to mandatory Federal Information Processing Standards (FIPS) must obtain support from a validated cryptographic module.

The Nokia Secure Optical Transport solution based on the 1830 PSS and 1830 SMS has been independently certified to meet numerous security standards as shown in Figure 4.

Versatility across industries and applications
The Nokia Secure Optical Transport solution is tailored to protect critical in-flight data in all of today’s high-capacity applications. Key applications that can benefit from this solution include:

- Enterprises or cloud providers who require secure, encrypted connectivity across data centers (cloud DCI)
- Government and institutions that require certified, secure, high-speed communications between different locations
- Healthcare applications, such as telemedicine and telehealth with high-quality, low-latency and privacy requirements between healthcare stakeholders
- Smart city infrastructure providing connectivity to smart appliances and supporting the Internet of Things (IOT).
- Managed wavelength service applications requiring secure encryption
- Transportation applications, such as railway signaling or ITS, requiring high capacity and low latency communications across different endpoints
- Latency-sensitive applications, such as high-definition video, that require a secure, ultra-low latency transport solution
- Utilities that want to protect their critical communication infrastructure and support smart grid, teleprotection, and SCADA applications.

Figure 4. The Nokia Secure Optical Transport solution is certified to meet strict security standards

<table>
<thead>
<tr>
<th>Standard criteria</th>
<th>Third-party evaluation</th>
<th>Secure development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using open standards</td>
<td>Independent certifications</td>
<td>The assurance pyramid</td>
</tr>
</tbody>
</table>

1830 PSS
- FIPS 140-2, Level 2
- Common Criteria EAL2+
- Common Criteria EAL3+/ANSSI QS

1830 SMS
- FIPS 140-2, Level 3
- Common Criteria EAL4+
- ANSSI QR

Other security features
Rigorous manufacturing process audits to prevent spyware or malware introduction

Security features
- Rigorous manufacturing process audits to prevent spyware or malware introduction
- Independent certifications from NIST, Common Criteria, ANSSI, and FIPS
- Using open standards

Versatility across industries and applications
The Nokia Secure Optical Transport solution is tailored to protect critical in-flight data in all of today’s high-capacity applications. Key applications that can benefit from this solution include:

- Enterprises or cloud providers who require secure, encrypted connectivity across data centers (cloud DCI)
- Government and institutions that require certified, secure, high-speed communications between different locations
- Healthcare applications, such as telemedicine and telehealth with high-quality, low-latency and privacy requirements between healthcare stakeholders
- Smart city infrastructure providing connectivity to smart appliances and supporting the Internet of Things (IOT).
- Managed wavelength service applications requiring secure encryption
- Transportation applications, such as railway signaling or ITS, requiring high capacity and low latency communications across different endpoints
- Latency-sensitive applications, such as high-definition video, that require a secure, ultra-low latency transport solution
- Utilities that want to protect their critical communication infrastructure and support smart grid, teleprotection, and SCADA applications.
Figure 5. Industries where the Nokia optical transport security solution have been deployed
About Nokia
We create the technology to connect the world. Powered by the research and innovation of Nokia Bell Labs, we serve communications service providers, governments, large enterprises and consumers, with the industry’s most complete, end-to-end portfolio of products, services and licensing.

From the enabling infrastructure for 5G and the Internet of Things, to emerging applications in digital health, we are shaping the future of technology to transform the human experience. networks.nokia.com

Nokia is a registered trademark of Nokia Corporation. Other product and company names mentioned herein may be trademarks or trade names of their respective owners.

© 2018 Nokia