Security Risk Index (SRI)
Security Risk Index (SRI) is a security risk assessment framework to measure the organization’s readiness against relevant security threats, both internal and external) and meeting legal, regulatory and compliance mandates attributable to information security and data privacy. It has been designed to support an organization in their journey of security governance, risk and compliance management.
Product overview
Digitization in the telecom sector has led to a transformation in operations, service provisioning and communication with customers. The rapidly changing business ecosystem, combined with increasingly frequent and sophisticated cyber threats, demands a commitment to cybersecurity measures.

It is thus essential for operators to carry out periodic security risk assessments of their telecom infrastructure and cover all critical layers such as network and infrastructure, applications, data, identity and access, and processes. The risk assessment must also cover the core telecom technologies like 2G, 3G, 4G/LTE, Fixed line, etc. and the associated layers like Radio Access Network, Transmission Network, Circuit Switched Core Network, Packet Switched Core Network, Evolved Packet Core, IMS, OSS, BSS, etc. The risk assessment methodology should include security maturity assessment.

Security organization is constantly on the lookout for benchmarking and self-assessment tools in response to the need to know what to do in an efficient manner. The security head should be able to incrementally benchmark against that control objective. This responds to three needs:

- A relative measure of where the organization is
- A manner to efficiently decide where to go
- A tool for measuring progress against the goal

Nokia Security Risk Index (SRI) has been designed to address the above needs. It is designed to evaluate and identify risks associated with applicable threats and inherent security weaknesses, and to provide a basis for management to establish a value-based security program.

Organization benefits
- Holistic risk assessment for both enterprise and telecom infrastructure against Nokia’s exhaustive cyber-attack use case library
- Access to industry and domain experts for risk assessment
- Continuous awareness on key security gaps related to processes, technologies and skill-sets.
- Tactical and strategic roadmap for cyber-security
- Effective compliance to legal, regulatory and privacy requirements
- Bridging design gaps at process and technology layers
- Complete visibility on operating effectiveness of security controls within the organization
Security Risk Index (SRI) Framework

SRI has three layers – input, processing and output. It starts with the understanding of security requirements in light of business context, study of the existing capabilities and the compliance mandates. It then uses the enabling tools (as stated below) to identify the 'statement of applicability' to do the test of design of applicable controls and test of their operating effectiveness.

A. **Nokia Cyber Security Reference Architecture:** This covers the different building blocks of cyber security framework.

B. **Nokia Cyber Security Attack Use Case Library:** This constitutes the library of security-attack use cases applicable to an organization.

C. **Nokia Unified Compliance Framework (UCF):** This is the aggregation of various information security standards which are applicable globally. It combines all the standards and converts the same into unique set of security controls.

D. **Nokia Technology Solution Effectiveness:** This covers the baseline technology features and the associated processes/services, which are required to make any technology solution complete.
SRI provides ‘Quantitative’, ‘Qualitative’ and ‘Strategic’ output to measure the effectiveness of their security program along with tactical and strategic security roadmap for the organization.

Quantitative
- Governance and compliance
- Identity and access management
- Security monitoring and operation
- Business Continuity Management
- Software and Application Security
- Incident and problem management
- Threat and Vulnerability Management
- Asset management
- Awareness
- Data protection
- Network architecture and security
- Privacy
- Third party management

Qualitative
- Management monitors and measures compliance with procedures and takes action where processes appear not to be working effectively. Processes are under constant improvement and provide good practice. Automation and tools are used in a limited or fragmented way.
- Processes have been refined to a level of good practice, based on the results of continuous improvement and maturity modelling with other enterprises. IT is used in an integrated way to automate the workflow, providing tools to improve quality and effectiveness, making the enterprise quick to adapt.
- Procedures have been standardized and documented, and communicated through training. It is mandated that these processes should be followed; however, it is unlikely that deviations will be detected. The procedures themselves are not sophisticated but are the formalization of existing practices.
- Processes have developed to the stage where similar procedures are followed by different people undertaking the same task. There is no formal training or communication of standard procedures, and responsibility is left to the individual. There is a high degree of reliance on the knowledge of individuals and, therefore, errors are likely.
- There is evidence that the organized has recognized that the issues exist and need to be addressed. There are, however, no standardized processes; instead, there are ad hoc approaches that tend to be applied on an individual or case-by-case basis. The overall approach to management is Disorganized.
Strategic

Although a properly applied capability already reduces risks, an organization still needs to analyze the controls necessary to ensure that risk is mitigated and value is obtained in line with the risk appetite and business objectives. The continued analysis introduces new actions. The strategic output consolidates these actions to define a roadmap for an organization to move from the ‘current state’ to the ‘desired state’.
SRI Execution Models

1. Test of design effectiveness (Basic Model):
 Review of all information security management system across all 13 domains to ascertain if the security controls are designed effectively, satisfy the company’s control objectives and can effectively prevent or detect errors attributable to information security. Process walkthroughs with at least one sample will be performed to evaluate design effectiveness. This includes limited vulnerability assessment and security configuration testing.

2. Test of operating effectiveness (Advanced Model): Re-performance of the control to determine whether the control is operating as designed and whether the security architecture is being designed and managed effectively to meet the desired objectives. Process walkthroughs are performed to evaluate design effectiveness. Collection and assessment of evidences from significant samples are performed to evaluate operational effectiveness. This includes exhaustive vulnerability assessment, penetration testing and security configuration testing.

SRI – Key Features

a. Understanding of environment:
 i. Network architecture
 ii. Existing security infrastructure across all communication layers – network, infrastructure, application, data, identity & access management, monitoring & response, etc.
 iii. Existing security control framework
 iv. Legal, regulatory and compliance mandates attributable to security
 v. Functional security requirements

b. ‘Statement of Applicability’ of security controls
 i. Identification of unique set of security controls applicable to an organization
 ii. Aligning security controls with global best practises

c. Threat modelling for critical information assets

d. Identification of cyber-attack/security attack use cases

e. Test of design and Test of Operating Effectiveness of applicable security controls in line with applicable threats and use cases

f. Vulnerability assessment/penetration testing

g. Cyber-security readiness score (AS-IS status)

h. Identification of key gaps with respect to processes, technology and skill-sets

i. Cyber security maturity score (current state and desired state)

j. Top 10 recommendations to move from current state to desired state (TO-BE status)

k. Continuous risk governance
About Nokia
Nokia is a global leader in the technologies that connect people and things. Powered by the innovation of Bell Labs and Nokia Technologies, the company is at the forefront of creating and licensing the technologies that are increasingly at the heart of our connected lives.

With state-of-the-art software, hardware and services for any type of network, Nokia is uniquely positioned to help communication service providers, governments, and large enterprises deliver on the promise of 5G, the Cloud and the Internet of Things. http://nokia.com

Nokia is a registered trademark of Nokia Corporation. Other product and company names mentioned herein may be trademarks or trade names of their respective owners.

© 2018 Nokia