The Nokia 7250 Interconnect Router R6 (IXR-R6) offers high port density in compact, modular form factors with extended temperature operation. It is ideal for IP anyhaul, access, aggregation, fixed-mobile convergence, and mission-critical applications.

With the 7250 IXR-R6, service providers can rapidly create and deploy new services while extending the lifetime of their existing infrastructure investment. Public and private enterprises can efficiently expand their aggregation networks.

New service opportunities
The 7250 IXR-R6 addresses all the new transport requirements on the path to 5G. The 7250 IXR-R6 delivers low latency forwarding for fronthaul, Internet of Things (IoT) and mission-critical applications while providing a large buffer memory for less delay-sensitive applications.

Per-service, per-priority queuing features support-differentiated quality of service (QoS), which is ideal for any-G aggregation and fixed-mobile network convergence. These features also help industrial enterprises attain IT/OT convergence by simultaneously carrying both their business and operational traffic.

Operators who upgrade to the 7250 IXR-R6 today will be ready to meet new service demands for many years to come.

Automation
The 7250 IXR-R6 uses the Nokia Service Router Operating System (SR OS) and is managed by the Nokia Network Services Platform (NSP). The NSP offers a rich set of service management features that automates new service delivery and reduces operating cost.

Standards-based software-defined networking (SDN) interfaces enable best-path computation to be offloaded to path computation elements (PCEs) such as the Nokia NSP. 7250 IXR-R6 routers, operating as path computation clients (PCCs) collect and report per-link and per-service delay, jitter and loss metrics, together with port utilization levels, for efficient path computation.

---

1 The 7250 IXR-R6 is part of the 7250 IXR product family. Additional data sheets are available for other models in this product family.
Network longevity

The modular architecture used by the 7250 IXR-R6 supports a variety of deployment options. High-density media-dependent adapters (MDAs) with 1GE/10GE/25GE/40GE/100GE ports accommodate future growth. CFP2 DCO optics provide high bandwidth over extended distances, lowering the total cost of operations. Legacy interface cards support transport over existing TDM interfaces and allow for seamless migration to a next-generation IP/MPLS infrastructure.

Side-to-side airflow with a fan filter and redundant fans increases system lifetime and reduces maintenance costs. Side-to-side airflow also guarantees compatibility with 300mm ETSI compliant cabinets; a capability that is typically not available with front-to-back cooled systems.

Reliable service delivery

Granular, in-depth and scalable per-service monitoring offers visibility into packet flows. The 7250 IXR-R6 provides comprehensive reporting on key performance indicators such as packet discard and forward counters. These capabilities improve reliability and help service providers fulfil service-level guarantees.

The 7250 IXR-R6 provides excellent protection against link or equipment failures through control and datapath redundancy options. It quickly reroutes traffic and re-converges networks using a robust set of dynamic routing and recovery capabilities. Superior network resiliency reduces network downtime and improves the overall productivity of network operations. With a highly resilient network, service providers can reduce operating costs, improve end-user satisfaction and offer higher-value SLAs.

For harsh environments

The 7250 IXR-R6, with its extended temperature range, mechanical hardening and robust EMC design, meets the IEEE 1613, IEC 61850-3 and EN 50121-4 standards for power substation and railway environments.

Software features

The 7250 IXR-R6 supports, but is not limited to, the following features.

Services

- Point-to-point Ethernet VPN services, Ethernet pseudowires/virtual leased line (VLL)
- Ethernet Virtual Private Network (EVPN)
  - Virtual Private Wire Service (EVPN-VPWS)
  - Multihoming with single active or active/active options
- Multipoint Ethernet VPN services with Virtual Private LAN Service (VPLS) based on Targeted Label Distribution Protocol (T-LDP) and Border Gateway Protocol (BGP)
- Routed VPLS with IES/IP-VPN IPv4 and IPv6
- Ingress and Egress VLAN manipulation for L2 services

2 Future software deliverable
• IP VPN (VPRN), Inter-Autonomous System (Inter-AS) Option A, B, and C
• IPv6 VPN Provider Edge (6VPE)
• Internet Enhanced Services (IES)

Interfaces
• Ethernet: 9K jumbo frames

Network protocols
• Segment routing with traffic engineering (SR TE)
  – Intermediate System-to-Intermediate System (IS-IS) and Open Shortest Path First (OSPF)
• MPLS label edge router (LER) and label switching router (LSR) functions
  – Label Distribution Protocol (LDP)
  – Resource Reservation Protocol with traffic engineering (RSVP-TE)
• BGP Labeled Unicast (LU) (RFC 3107) route tunnels
• IP routing
  – Dual-stack Interior Gateway Protocol (IGP)
  – Multi-topology, multi-instance Intermediate System to Intermediate System (IS-IS)
  – Multi-instance Open Shortest Path First (OSPF)
  – Multiprotocol BGP (MP-BGP)
  – BGP-LU support in edge, area border router (ABR) and autonomous system boundary router (ASBR) roles
  – Usage-triggered download of BGP label routes to Label - Forwarding Information Base (L-FIB)
  – Accumulated IGP (AIGP) metric for BGP
  – BGP route-reflector for IP-VPN, VPNv4 and VPNv6 address families (AFs)
• Layer 3 Multicast - base routing
  – Internet Group Management Protocol (IGMP)
  – Protocol Independent Multicast – Sparse Mode (PIM-SM), Source Specific Multicast (SSM)
  – Multicast Listener Discovery (MLD)
• Layer 3 Multicast - VPRN
  – Next generation multicast VPNs (NG-MVPN)
  – SSM with multicast LDPv4 (mLDPv4)
  – IGMP/MLD
  – IGMP/MLD on RVPLS Interface
• Layer 2 Multicast
  – IGMP/MLD snooping

SDN
• SR-TE LSPs, RSVP-TE LSPs
  – PCC initialized, PCC controlled
  – PCC initialized, PCE computed
  – PCC initialized, PCE controlled
• SR-TE LSPs
  – PCE initialized, PCE controlled
• Topology discovery
  – BGP-Link State (BGP-LS)
• Telemetry
  – Streaming interface statistics

Load balancing & resiliency
• Control plane high availability (HA)
• HA routing & forwarding
• Segment routing topology independent and remote loop-free alternate (TI-LFA and rLFA)
• LDP LFA
• IEEE 802.3.ad Link Aggregation Group (LAG) and multi-chassis (MC) LAG
• Pseudowire and LSP redundancy
• IP and MPLS load balancing by equal-cost multipath (ECMP)
• Virtual Router Redundancy Protocol (VRRP)
• Configurable polynomial and hash seed shift
• Entropy label (RFC-6790)
• RSVP-TE Fast Reroute (FRR)
• BGP Edge and Core Prefix Independent Convergence (BGP PIC)
Platform
- Ethernet IEEE 802.1Q (VLAN) and 802.1ad (QinQ) with 9K jumbo frames
- Counters per service access point (SAP) and network interface in addition to port-based statistics
- High-scale, per Virtual Output Queue (VoQ) packet and byte counters
- High-scale, per-policer, detailed counters on a per-state basis
- Configuration rollback
- Dynamic Host Configuration Protocol (DHCP) server for IPv4 IES, VPNv4
- DHCP relay for IPv4 IES, VPNv4, VPNv6
- Accounting records

QoS and traffic management
- Hierarchical QoS (H-QoS)
  - Hierarchical egress schedulers and shapers per forwarding class, SAP, network interface or port
  - Port sub-rate
- Intelligent packet classification, including complex multifield classification
- Granular rate enforcement with up to 32 policers per SAP/VLAN including broadcast, unicast, multicast and unknown policers
- Hierarchical policing for aggregate rate enforcement
- Strict priority, weighted fair queuing schedulers
- Congestion management via weighted random early discard (WRED)
- Egress marking or re-marking

System management
- Simple Network Management Protocol (SNMP)
- Model-driven (MD) management interfaces
  - Netconf
  - MD CLI
  - Remote Procedure Call (gRPC)
- Comprehensive support through Nokia NSP

Operations, administration and maintenance
- IEEE 802.1ag, ITU-T Y.1731: Ethernet Connectivity Fault Management (CFM) for both fault detection and performance monitoring, including delay, jitter, and loss tests
- Ethernet bandwidth notification (ETH-BN) with egress rate adjustment
- IEEE 802.3ah: Ethernet in the First Mile (EFM)
- Bidirectional Forwarding Detection (BFD)
- Two-Way Active Measurement Protocol (TWAMP), TWAMP Light
- A full suite of MPLS OAM tools such as LSP and virtual circuit connectivity verification (VCCV) ping
- Service assurance agent
- Mirroring with slicing support
  - Port
  - VLAN
  - Filter output (Media Access Control (MAC)/IPv4/IPv6 filters)
  - Local/remote
- Port loopback with MAC-swap
- Configuration rollback
- Zero Touch Provisioning (ZTP) capable

Security
- Remote Authentication Dial-In User Service (RADIUS), Terminal Access Controller Access Control System Plus (TACACS+), and comprehensive control-plane protection capabilities
- Access control lists (ACLs) and Multifield Classifiers (MFCs)
  - IPv4, IPv6, and MAC access lists
- Per-port MAC security (MACsec)3
- IP security (IPsec)3
- Network address translation (NAT)3
- Firewall3
- SNMP v3
- Secure Shell (SSH)

3 Future software deliverable
## Technical specifications

### Table 1. 7250 IXR-R6 series specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>7250 IXR-R6</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>System throughput</strong></td>
<td><strong>1.6 Tbps with single or redundant active/standby control-processor input/output modules (CPIOMs)</strong></td>
</tr>
<tr>
<td><strong>Half duplex IMIX traffic</strong></td>
<td><strong>1.6 Tbps with single or redundant active/standby control-processor input/output modules (CPIOMs)</strong></td>
</tr>
<tr>
<td><strong>Card slot throughput</strong></td>
<td><strong>160 Gbps full duplex (FD) per slot</strong></td>
</tr>
<tr>
<td><strong>Card slots</strong></td>
<td><strong>Six</strong></td>
</tr>
<tr>
<td><strong>Built-in service interfaces</strong></td>
<td><strong>None</strong></td>
</tr>
<tr>
<td><strong>Built-in control processor interfaces</strong></td>
<td>• Console, management, SyncE/1588, BITS, Bluetooth, USB, GNSS in, 1PPS out, Optical Management Connection (OMC), SD slot.</td>
</tr>
<tr>
<td><strong>Timing and synchronization</strong></td>
<td>• Includes Stratum 3E oscillator</td>
</tr>
<tr>
<td></td>
<td>• ITU-T Synchronous Ethernet (SyncE)</td>
</tr>
<tr>
<td></td>
<td>• IEEE 1588v2 (default and ITU-T G.8275.1 profiles)</td>
</tr>
<tr>
<td></td>
<td>• ITU-T G.8273.2 Class B</td>
</tr>
<tr>
<td></td>
<td>• Grandmaster clock (GM), master clock (MC), boundary clock (BC), slave clock (SC)</td>
</tr>
<tr>
<td></td>
<td>• RFC 5905 Network Time Protocol (NTP)</td>
</tr>
<tr>
<td></td>
<td>• Building Integrated Timing Supply (BITS) port (T1, E1, 2M) and pulse-per-second (1PPS) timing</td>
</tr>
<tr>
<td></td>
<td>• Integrated, redundant GNSS receivers</td>
</tr>
<tr>
<td></td>
<td>• Support for GNSS SFP</td>
</tr>
<tr>
<td><strong>Common connectors/indicators (on the fan tray)</strong></td>
<td>• Alarm input/output</td>
</tr>
<tr>
<td></td>
<td>• Alarm cutoff/lamp test (ACO/LT) button</td>
</tr>
<tr>
<td></td>
<td>• Power status (A &amp; B), fan and alarm LEDs</td>
</tr>
<tr>
<td><strong>Memory buffer size</strong></td>
<td><strong>8 GB</strong></td>
</tr>
<tr>
<td><strong>Enhanced statistics collection</strong></td>
<td><strong>Full scale</strong></td>
</tr>
<tr>
<td><strong>Common equipment redundancy</strong></td>
<td><strong>Control, switch, power feeds, cooling fans</strong></td>
</tr>
<tr>
<td><strong>Dimensions</strong></td>
<td>• Height: 3RU, 13.3 cm (5.25 in)</td>
</tr>
<tr>
<td></td>
<td>• Width: 44.5 cm (17.5 in)</td>
</tr>
<tr>
<td></td>
<td>• Depth: 26.5 cm (10.4 in)</td>
</tr>
<tr>
<td></td>
<td>• Rack-mountable in a 48.2-cm rack, 30-cm depth (standard 19-in equipment rack, 12-in depth)</td>
</tr>
<tr>
<td><strong>Power</strong></td>
<td>• Two feeds: -48 V DC/-60 V DC</td>
</tr>
<tr>
<td></td>
<td>• AC power solutions available: 100 V AC to 240 V AC, 50 Hz/60 Hz</td>
</tr>
<tr>
<td><strong>Cooling</strong></td>
<td>• One tray of six ultra-quiet fans with redundancy</td>
</tr>
<tr>
<td></td>
<td>• Safety electronic breaks on removal</td>
</tr>
<tr>
<td></td>
<td>• Right-to-left airflow</td>
</tr>
<tr>
<td></td>
<td>• Front-to-back airflow (optional with add-on ancillaries)</td>
</tr>
<tr>
<td></td>
<td>• Fan filter</td>
</tr>
<tr>
<td><strong>Normal operating temperature range</strong></td>
<td><strong>-40°C to +65°C (-40°F to +149°F) sustained</strong></td>
</tr>
<tr>
<td><strong>Shipping and storage temperature</strong></td>
<td><strong>-40°C to +70°C (-40°F to +158°F)</strong></td>
</tr>
<tr>
<td><strong>Normal humidity</strong></td>
<td><strong>5% to 95%, non-condensing</strong></td>
</tr>
</tbody>
</table>

---

4 Some control processor port features are future software deliverables.
5 Future
Table 2. 7250 IXR-R6 MDA cards

High-density MDA cards provide flexibility with multiprotocol ports. 100GE, 40GE, 25GE and 10GE can be supported on QSFP28 ports; 25GE, 10GE and 1GE can be supported on SFP28 ports; and SFP+ and SFP modules can be installed in the same ports. Legacy TDM interfaces are also supported on the 7250 IXR-R6.

<table>
<thead>
<tr>
<th>Card name</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-port 100GE + 6-port 10GE</td>
<td>• 1 x QSFP28/QSFP+ 100/40GE (supports breakout to 4 x 10GE or 4 x 25GE) • 6 x SFP+/SFP 10/1GE</td>
</tr>
<tr>
<td>1-port 100GE + 4-port 10GE</td>
<td>• 1 x CFP2 DCO 100GE • 4 x SFP+/SFP 10/1GE</td>
</tr>
<tr>
<td>4-port 25GE + 6-port 10GE</td>
<td>• 4 x SFP28/SFP+ 25/10GE • 6 x SFP+/SFP 10/1GE</td>
</tr>
<tr>
<td>10-port 10GE</td>
<td>• 10 x SFP+/SFP 10/1GE</td>
</tr>
<tr>
<td>20-port GE</td>
<td>• 20 x cSFP 1GE (also accepts SFPs)</td>
</tr>
<tr>
<td>32-port ASAP T1/E1*</td>
<td>• E1 TDM services supported</td>
</tr>
</tbody>
</table>

* Compatible with 7705 SAR-8/SAR-18. See the 7705 SAR data sheets for more details.

Table 3. Platform density

7250 IXR-R6

- 6 x 100/40GE + 36 x 10/1GE
- 24 x 25GE + 36 x 10/1GE
- 60 x 10/1GE
- 80 x GE
Standards compliance

Environmental specifications

• ATIS-0600015.03
• ATT-TP-76200
• ETSI EN 300 019-2-1; Storage Tests, Class 1.2
• ETSI EN 300 019-2-2; Transportation Tests, Class 2.3
• ETSI EN 300 019-2-3; Operational Tests, Class 3.2
• ETSI EN 300 753 Acoustic Noise Class 3.2
• GR-63-CORE
• GR-295-CORE
• GR-3108-CORE
• VZ-TPR-9205
• VZ.TPR.9203 (CO)

Safety

• AS/NZS 60950.1/62368.1
• IEC/EN 60825-1
• IEC/EN 60825-2
• IEC/EN/UL/CSA 60950-1 Ed2
• IEC/EN/UL/CSA 62368-1 Ed2

Electromagnetic compatibility

• AS/NZS CISPR 32 Class A
• ATIS-0600315.2013
• BSMI CNS13438 Class A
• BT GS-7
• EN 300 386
• EN 301 489-1
• EN 301 489-17 (Bluetooth)
• EN 301 489-19 (GNSS)
• EN55032 Class A
• EN 55024
• ES 201 468
• ETSI EN 300 132-2
• FCC Part 15 Class A
• GR-1089-CORE
• ICES-003 Class A
• IEC 61000-6-2
• IEC 61000-6-4
• IEC CISPR 24
• IEC CISPR 32 Class A
• IEC/EN 61000-4-2 ESD
• IEC/EN 61000-4-3 Radiated Immunity
• IEC/EN 61000-4-4 EFT
• IEC/EN 61000-4-5 Surge
• IEC/EN 61000-4-6 Conducted Immunity
• IEC/EN 61000-4-11 Voltage Interruptions
• KCC Korea-Emissions & Immunity (in accordance KN32/35)
• KN 301 489-1
• KN 301 489-17 (Bluetooth)
• VCCI Class A

Directives, regional approvals and certifications

• DIRECTIVE 2011/65/EU Restriction of the use of certain Hazardous Substances in Electrical and Electronic Equipment (Recast) Directive (RoHS2)
• DIRECTIVE 2012/19/EU Waste Electrical and Electronic Equipment (WEEE)
• DIRECTIVE 2014/30/EU Electromagnetic Compatibility (EMC)
• DIRECTIVE 2014/35/EU Low Voltage Directive (LVD)
• DIRECTIVE 2014/53/EU Radio Equipment Directive (RED)
• NEBS Level 3
• Australia: RCM Mark

System design intent is according to the listed standards. Refer to product documentation for detailed compliance status.
• China RoHS: CRoHS
• Europe: CE Mark
• Japan: VCCI Mark
• South Korea: KC Mark
• Taiwan: BSMI Mark

**Power utility substations**
• IEEE 1613 (exception, forced air system)
• IEEE 1613.1
• IEC 61000-6-5
• IEC 61850-3 (normal environmental conditions)
• IEC/AS 60870.2.1

**Railway**
• EN 50121-4
• IEC 62236-4

**Other certifications**
• MEF CE 3.0 certified