Calculating the benefits of Fiber for Everything
New paradigm: Fiber for Everything

The industry is raising the bar for fiber broadband. It is not just fiber-to-the-home but Fiber for Everything.

Recent advances in technologies are pushing the boundaries of fiber broadband performance in terms of speed, latency, agility... This means that existing fiber broadband networks can now cover new use cases and connect enterprises, Industry 4.0, 5G sites, smart city infrastructure, etc.

Having a unified network that delivers all services means you need to dig only once and have one network to deploy, power, operate and maintain, which delivers cost benefits. Fiber in itself is a highly efficient network in terms of operating costs and power consumption, so the more end points are connected to fiber broadband network, the better it is for the business case.

Let's explore the economic benefits of Fiber for Everything.
Comparing 5-year total cost of ownership (TCO) compared for two scenarios

Traditional approach
Multiple parallel networks are deployed for different services
- PON for consumer services and small businesses
- Dedicated P2P network for enterprise services
- Dedicated P2P for mobile transport
- Dedicated pre-aggregation of remote DOCSIS nodes.

Converged approach
The existing PON FTTH network supporting GPON, XGS-PON or 25G PON, delivers all services.
Business case assumption and results

Assumptions

- **Urban area**
- **Split ratio on PON**: 64
- **Underground cabling**
- **Small/medium businesses (SME)** have similar bandwidth demands as residential users

Results

- **Consumers are served on PON or PON+DOCSIS**
- **Enterprises require multi-Gigabit connectivity**
- **Mobile transport**: backhaul and midhaul

CAPEX: Network equipment, passive plant, fiber drop, customer CPE and installation

OPEX: Maintenance, upgrades, power consumption, floor space, customer care, fault management

TCO
1 – Benefits of serving enterprises on PON

Key findings

Serving even a small number of enterprises on a PON instead of P2P delivers 30% cost savings and consumes 40% less power over 5 years. These numbers come from the cost savings on business routers, central office equipment, and outside plant.

The power consumption of the customer premises equipment (business routers and ONTs) are not included in OPEX as they are paid by enterprise customers.

Assumptions

Residential: 93% of all users on a PON
SME: 5% of all users on a PON
Enterprise services: 2% of all users on a PON
Mobile transport: not included
DOCSIS users: not included
2 - Benefits of serving mobile transport on PON

Key findings

Mobile sites have the same footprint as PON networks, so using the PON to connect them eliminates the need for a dedicated transport network. Serving mobile transport on PON networks delivers 50% cost savings and 45% power savings over 5 years.

In converged networks, we consider SFP ONTs for mobile transport, which are plugged into the cell site gateway. These SFPs are very power efficient, resulting in higher power savings.

Assumptions
- Residential: 94% of all users on a PON
- SME: 5% of all users on a PON
- Enterprise services: not included
- Mobile transport: backhaul
 - Number of cells: 1% of all endpoints
 - Intercell distance: 500m
- DOCSIS users: not included
Key findings

Many cable operators deploying DOCSIS technology are already deploying or exploring the benefits of PON. In this scenario we assume that the existing remote DOCSIS nodes are backhauling via PON instead of P2P fiber. In addition, these PON networks can serve enterprise customers with high upstream and downstream speeds, bringing more revenues. The total TCO benefits come from eliminating the need for costly P2P connectivity, bringing 40% lower TCO, and requiring >35% less power and floor space.

Assumptions
- Residential: 50% served on PON, 50% on DOCSIS
- SME: 5% of all users on a PON
- Enterprise services: 2% of all users on a PON
- Mobile transport: not included
- DOCSIS users: 50% of all residential users
Final observations

Fiber broadband networks are available everywhere so they can be used to connect more than consumers.

Technology advances in PON (capacity, latency, SDN) enable fiber networks to connect enterprises, mobile cells, smart cities, etc.

The benefits include:
- Lower TCO
- Energy efficiency
- Less floor space
- More revenues on fiber.

PON has unlimited bandwidth potential, supports smooth evolution and co-existence of multiple technologies (speeds) over the same optical cable.

Network slicing enables a single physical PON network to be partitioned into several logical slices. Each type of service can have its own slice.

PON is the greenest of all broadband technologies, resulting in lower total energy bills as more services are converged to it.
At Nokia, we create technology that helps the world act together.

Through B2B networks that sense, think and act, we enable our customers, partners and technology innovators to create the digital services and applications of the future.

By pioneering the future where networks meet cloud, we are helping to realize the full potential of digital in every industry.

Nokia is a registered trademark of Nokia Corporation. Other product and company names mentioned herein may be trademarks or trade names of their respective owners.

Nokia OYJ
Karakaari 7
02610 Espoo
Finland

Tel. +358 (0) 10 44 88 000
CID: 212655
© 2023 Nokia