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With advances in end-user devices and other technologies, the demand for immersive experiences 
that seamlessly blend the digital and physical worlds will be significant by the end of the decade. 
To support these, 6G networks will need to deliver unprecedented capacity, low latency, energy 
efficiency, and cognitive capabilities to manage vast radio resources. The potential of artificial 
intelligence (AI) to enhance the physical layer and reach these goals has been demonstrated in 
previous works. In this white paper, we explore the frontiers of machine learning (ML) to improve 
features beyond the physical layer (PHY) and further enhance the native AI air interface (AI-AI) 
envisioned for 6G. We survey recent research on AI-driven functions such as resource allocation, 
random access, adaptive modulation and coding (AMC), power control, protocol learning, channel 
state information (CSI) reporting, hybrid automatic repeat request (HARQ), and multi-RAT 
spectrum sharing (MRSS). We contend that while the fundamental duties of the 6G wireless 
medium access control (MAC) will remain consistent with prior generations, the integration of ML 
methodologies will instigate transformative changes across multiple MAC domains. This infusion 
of ML-driven strategies will open new avenues for development and maintenance and undergird 
future redesign efforts. 
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Introduction
The upcoming generation of mobile networks, slated for deployment at the end of this decade, will 
revolutionize human communications by unifying the digital and physical worlds into a scalable metaverse. 
New technologies such as extreme massive multiple input multiple output (MIMO), joint communications 
and sensing (JCAS), native AI-AI [1], and cognitive networks are being researched for 6G to fulfill these 
requirements (see Figure 1). At the standardization level, the journey towards 6G is also starting in 3GPP 
Rel-19 [2]. AI techniques hold promise for optimizing the physical layer of the air interface, simplifying 
complex optimization problems, and enhancing performance of known procedures such as joint channel 
estimation, detection, nonlinear distortion removal, and even neural receivers. Similarly, AI will play a 
crucial role in other layers of the protocol stack, addressing the increased heterogeneity of 6G use-cases. 
Indeed, Nokia has recently proposed [12] a novel protocol stack design, where the stack is split into a slow 
and a fast stack, to avoid low-speed optimizations damaging the high-speed user-plane. This flexible and 
scalable architecture would offer a high degree of customization that can be leveraged with AI methods to 
train protocol stacks (or parts thereof) for custom needs.

Figure 1. Key technologies in 6G
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In modern mobile communication systems, the MAC has evolved beyond its basic role of wireless channel 
access control. Jointly with the upper PHY and other lower layers (see Figure 2), they now encompass 
functions such as: 

•	 Scheduling and logical channel multiplexing, including dynamic spectrum sharing

•	 Link adaptation (coding rate, modulation, transmit power, timing advance)

•	 HARQ management

•	 Link and device status reporting (channel state feedback, buffer status reporting (BSR), power 
headroom reporting (PHR), link and beam failure)

•	 Energy efficient features (discontinuous transmission and reception). 

Figure 2. Main functionalities of the 6G layer two (L2)
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As these functions grow increasingly elaborate, ML techniques hold the potential to comprehend and 
optimize them effectively. To exemplify the escalating complexity, let’s consider the packet scheduler — 
a quintessential MAC function. In massive MIMO macro systems, the scheduling function involves MIMO 
pairing to co-schedule users across multiple spatial layers, utilizing the same time/frequency resources.  
5G already supports a limited version of multi-user MIMO (MU-MIMO). The major challenge, however, 
remains to scale the number of co-scheduled users even faster due to smaller time slots. 

In 6G, the scheduler will face additional challenges, including managing network slicing with increased 
carrier bandwidth (100–400 MHz), accommodating diverse QoS requirements, and co-scheduling 5G and 
6G devices on shared carriers. The intricate dependencies between these responsibilities will challenge AI 
techniques to unveil novel packet scheduling methods. Rel-18 3GPP studies already explore AI applications 
such as beam management and channel state feedback compression for 5G-Advanced, and some, such as 
beam management, will be standardized in Rel-19 [2]. In addition, radio MLOps, as recently proposed by 
Nokia [3], will certainly be needed to enable all these functionalities in a scalable manner.
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Resource allocation
Deep scheduling of data channels
Traditional packet schedulers are structured in sub-modules for time, frequency and spatial-domain 
scheduling. In the first sub-module, a time domain (TD) scheduler identifies high-priority user equipment (UE) 
for scheduling on each transmission time interval (TTI). Subsequently, a frequency domain (FD) scheduler 
maps frequency resources to the selected UEs. This may involve beam selection and MU-MIMO pairing.

Figure 3: Performance gains (left) achieved by a DDQN-based scheduler over a PF baseline under various 
traffic. The learning curve on the right illustrates learning progress during training.
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To illustrate deep RL-based scheduling, we trained a downlink MU-MIMO scheduler using a double-deep 
Q-network (DDQN). Imitation learning techniques were used to avoid performance-damaging random 
exploration, where the DDQN agent was rewarded when its decisions matched those of an expert Proportional 
Fair (PF) scheduler. The resulting deep scheduler learned to leverage frequency selectivity and dynamic 
frequency-hopping patterns (see Figure 3). Since training can be done offline in simulators, the agent can 
be exposed to a vast amount of radio challenges and learn from them. Furthermore, ML models also offer 
the advantage of fast real-time scheduling decisions with a constant number of operations during the 
forward pass. Nokia is currently conducting additional research into RL techniques for radio resource 
scheduling, such as soft actor critic (SAC) and proximal policy optimization (PPO), including realistic 
assessments of each method’s training to performance tradeoff.
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Random access
Random access is the first uplink transmit procedure executed by UEs to achieve connectivity. The number 
of random-access channel (RACH) resources is limited, however, and the lack of initial coordination by the 
network makes random access a contention-based process by necessity.

Conventional threshold-based techniques for the detection of random access (RA) preambles leverage the 
correlation properties of Zadoff-Chu sequences, which are used as orthogonal preambles. This approach, 
however, leads to ‘preamble collisions’ whenever two or more nodes choose the same preamble. In massive 
machine-type communications (mMTC) networks, the chances of several UEs choosing the same preamble 
are just too high. Another problem of this approach is false peaks (i.e., preambles) detection, which worsens 
under interference-limited conditions.

In 5G networks, low-latency connectivity was introduced and will be further enhanced in 6G. With a 
larger number of devices using low-latency services, situations with low coverage may lead to increased 
contention for limited RACH resources. Rapid resolution of these frequent contentions will be crucial to 
ensure the expected low latencies in 6G services.

ML is well-suited for classification tasks like preamble detection in RA. In this context, solutions based on 
decision-tree classification (DTC), naive Bayes, K-nearest neighbor, and Bagged decision tree ensembles 
for the purpose of RA preamble detection have been proposed. Experimental results show that ensemble 
methods achieve similar false peak detection rates as the Zadoff-Chu sequence baseline, with faster 
inference speed but increased training complexity, particularly under low signal-to-interference-and-noise 
ratio (SINR) conditions.

Overall, ML preamble and timing advance (TA) value detection is promising to leverage non-orthogonal 
preambles and reduce RA latency in future massive networks. Incidentally, networks with large numbers of 
devices are also the ones that can produce sufficiently large training datasets to train such models, thus 
facilitating their development.
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Link adaptation
ML-based adaptive modulation and coding
Adaptive modulation and coding (AMC) is an essential function. It selects the best modulation and coding 
scheme (MCS) considering channel estimates, data size, and system constraints. Challenges include 
balancing aggressive transmissions for spectral efficiency and conservative transmissions for latency and 
block error rate (BLER). For classic eMBB services and their first transmission target (a BLER of 10–20%), 
existing heuristics achieve good performance in matching BLER targets and maximizing the spectral 
efficiency. These currently used techniques, however, have a considerably higher impact on spectral 
efficiency when the BLER target is in the order of 0.001%, which is the case for ultra-reliable low latency 
communications (URLLC). 

Recent efforts targeting URLLC applications have, therefore, introduced new ML-based AMC architectures 
that balance performance gains with computational and implementation complexity. Some approaches 
employ models, while others use function approximators. Multi-armed bandits have also been explored as 
an MCS selection algorithm, as well as Thompson sampling for enhancing MCS selection by tracking a low-
dimensional representation of the SINR. Additionally, [5] focused on interference prediction using kernel 
density estimation to adjust MCS selection based on the interference’s probability density function.

Function approximators-based AMC approaches primarily rely on deep neural networks. However, the lack 
of ground-truth MCS decisions as labels has limited the use of supervised learning. To overcome this, 
deep reinforcement learning (RL) has been explored for MCS selection policies in real-time scenarios [6, 7], 
where lightweight and efficient solutions need to make fast decisions for multiple UEs. Small-sized actor-
critic and proximal policy optimization (PPO) models have been trained, achieving notable performance. 
Other solutions developed by Nokia build on top of the most used existing heuristic, outer loop link 
adaptation (OLLA), to reduce the implementation efforts. One such approach is presented in [8], where the 
authors introduce a differentiable computation graph to train OLLA hyper-parameters dynamically. As an 
alternative, [9] proposes to substitute OLLA’s analytical formula with the actions of an RL agent to offset 
the SINR estimate before AMC. All the proposed solutions trade off computational complexity for reliability, 
which can boost URLLC performance in 6G systems.

ML-based power control
In 4G and 5G, uplink transmit power management includes open-loop and closed-loop components, which 
ensure spectral flatness, SINR maximization, and minimal UE battery drain. Open loop power control (OLPC) 
adjusts transmit power via two cell-specific parameters that are typically set via trial-and-error by the 
mobile network operator (MNO). While historically reliable, this performance is often suboptimal.

Exploring new OLPC parameter values carries connectivity risks, and the lack of closed-form expressions 
for network performance discourages MNOs from deviating from established values. To address 
these challenges, Nokia recently proposed leveraging black-box optimization techniques like Bayesian 
optimization with Gaussian processes (BOGP) [10], which yielded large gains in an operator-controlled 
trial in a large 5G network. Compared to conventional ML techniques, BOGP converges in fewer samples, 
reducing outage risks and ensuring safer optimization. 
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Specific 6G verticals may require more frequent adaptation of OLPC parameter values. Cell-specific OLPC 
settings could also be desirable. To address these needs, [4] presented another concept with multi-agent 
reinforcement learning (MARL) and centralized training with decentralized execution (CTDE) techniques 
to avoid multi-agent optimization issues. Neighboring base transceiver station (BTS) interference poses 
a challenge when using cell-specific power control. Independent ML solutions, where each BTS learns 
optimal parameters, face convergence issues due to non-stationarity. In naive independent learning, 
performance collapses as ML agents compete, hindering stable learning in neighboring nodes. Centralized 
or cooperative learning with neighboring base stations is required to overcome this. One demonstrated 
solution [4] is to let neighboring BTSs share information for joint learning and fair action selection.

In 6G, with massive antenna arrays, MU-MIMO is the default mode, and transmissions overlap in time/
frequency but are separated spatially. This leads to the challenge of minimizing intra-cell interference. 
Increasing transmit power for one user raises uplink interference for others, reducing the effectiveness 
of conventional UE-specific closed loop power control (CLPC). At Nokia Bell Labs, we are exploring a 
tighter integration of OLPC and CLPC functions with scheduler decisions in MU-MIMO settings. The sheer 
complexity of this joint optimization problem demanded an ML-based approach based on convolutional 
neural networks that outperforms conventional solvers. 
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Signaling overhead reduction
Protocol learning
In 5G, MAC protocol data units (PDUs) carry a 6-bit logical channel ID (LCID), used to identify L2 control 
elements (CEs) like BSR or PHR. Specialized deployments, however, may not require these messages, whose 
processing imposes a heavy computational toll on the receiving devices (processing packet headers and 
other non-payload fields is a large computational burden in radio protocols). For example, in a low-traffic 
wireless network such as a sensor network with infrequent events, BSR exchanges between sensor UEs and 
the radio access network (RAN) may be unnecessary. Removing BSR would allow reduction in the size of 
MAC uplink PDUs. At the same time, this approach may not be suitable for high-capacity networks that are 
reliant on BSR signaling. 

For instance, the laser cutting machine modeled in [11] produces, on average, data packets with a median 
size on the order of 100 B every 10 ms, as well as some larger packets, less frequently. Since this data 
volume is very small, L2 protocols in this scenario would incur a high header-to-payload ratio. This differs 
from scenarios like enhanced mobile broadband (eMBB) and small office home office (SOHO), where large 
data packets carrying video frames are common. Additionally, business-critical indoor factory (InF) traffic 
requires reliable channel access and strict QoS, while contention-based access may suffice for SOHO 
scenarios. Even within the same scenario, different applications have varying requirements. Current 
network resource management satisfies application QoS needs, but the MAC PDU structure remains largely 
unchanged. A more customized control plane is clearly desired, which will require a new MAC architecture, 
such as the one described in [12], where most of the control-plane signaling is shifted to an anchor 
protocol stack (APS).

A split stack would facilitate the customization of MAC protocol headers, which can be done manually 
or emerge via AI with protocol learning techniques. Early work in protocol learning [13, 14] employed a 
holistic approach to train an ML model capable of replacing a complete MAC layer. With these methods, 
AI agents at the BTS and UEs jointly learned a new L2 signaling and access policy. However, the large MAC 
signaling space rendered most of these methods impractical and hard to scale. Instead, recent research 
trends focus on reducing the problem size through techniques like state abstraction [15] with multi-agent 
proximal policy optimization (MAPPO), semantic communications [16], or goal-oriented communications, 
currently being studied in the EU-funded project CENTRIC [17].

Reporting of channel state information (CSI)
In 5G, the quality of radio channels is measured across multiple dimensions (time-frequency resources, 
spatial layers, beams, etc.). This collection of UE-side measurements, to be returned to the BTS, is 
generally named CSI, and it includes metrics such as channel matrices, rank indicators, and others. For 
instance, UEs regularly send the channel quality indicator (CQI) to the BTS for link adaptation purposes. 
However, a single number like the CQI cannot capture the multidimensional complexity of MIMO channel 
measurements. Large channel matrices are needed for this, but they need large bandwidths to be properly 
fed back to the BTS. The larger number of antenna elements and the larger 6G bandwidths will increase the 
size of these matrices even more, which is why efficient encoding mechanisms are needed.
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Transformer-based autoencoders seem to outperform convolutional ones for CSI feedback compression. 
This is because they leverage frequency band proximity and space correlations across antenna elements 
in MIMO panels with significantly fewer parameters. Model size reduction is indeed essential for deploying 
ML-based CSI encoders on real-time hardware. To illustrate this, Figure 5 shows mean bitrate gains of 
up to 13% for a transformer-based CSI feedback architecture over 3GPP Rel-16 eType II codebooks. In 
this design, the CSI encoder sits at the UE side, while the decoder is at the BTS side. In general, any CSI 
encoding mechanism must be matched against current codebook-based feedback methods and yield 
clear gains in terms of channel matrix reconstruction error and bitrate performance. Only if unanimity 
is reached on the advantages of these methods will the relevant industrial bodies (e.g., 3GPP) move to 
standardize the necessary support for separate training of encoder and decoder, life-cycle management of 
ML functionality, and data collection.

Figure 4. Rank 2 MU-MIMO performance of a transformer CSI compression chain with 1.5M trainable 
parameters [18]. Uma SLS at fc =4 GHz, BW = 20 MHz, 21 cells and 80% indoor and 20% outdoor UE 
distribution. L denotes the number of combined beams reported by the UE.
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Multi-RAT spectrum sharing (MRSS)
WRC-2023 identified bands 7.125-8.4 GHz and 14.8-15.35 GHz for potential 6G usage, as they will 
support the large bandwidths expected of this technology (up to 400 MHz). Nonetheless, the 410–7125 
MHz band (aka 3GPP FR1) will still remain as an important option for coverage and capacity. In the early 6G 
deployment phase, however, these bands will be crowded with legacy 5G networks. As 6G devices slowly 
replace 5G ones, MRSS will provide a dynamic co-existence solution to ease the transition. A key design 
decision in MRSS deployments will be whether to coordinate 5G and 6G spectra separately via dynamic 
resource splitting, or through joint 5G-6G scheduling.  

The 5G-6G co-existence scenario’s complexity may surpass that of 4G-5G, yet it presents increased 
flexibility with the beam-centric nature of both generations. Enhanced coordination between 5G and 6G 
schedulers will be needed to leverage these capabilities. Furthermore, 6G deployments will be more 
heterogeneous, involving private 6G networks sharing spectrum with public and/or private 5G networks. A 
single 6G design may not be suitable for all spectrum-sharing scenarios, but ML models can be trained for 
specific transient needs. For instance, a small private 6G network near a public 5G network could benefit 
from learning tailored orthogonal frequency-division multiple access (OFDMA) pilot patterns for the public 
network configuration. Retraining the private network as the public network evolves lets it adapt to shifting 
coexistence conditions.

Distributed deep MARL techniques have also been proposed for spectrum access coordination [20], which 
is preferable for private 6G networks lacking interfaces to nearby 5G networks. Deep classifiers have also 
shown [20] reliable performance in spectrum sensing tasks, accurately predicting spectrum usage. In 
general, MRSS is a migration feature and will not persist during the lifetime of 6G deployments. It may, 
nonetheless, be essential to 6G’s success by facilitating the highly dynamic transition period from 5G to 
6G. Further details about MRSS can be found in [19].

Conclusion
The lower layers of the radio stack, and the MAC in particular, play a crucial role in both PHY operations and 
L2 control-plane semantics. For this reason, the future of ML-based MAC entails using smaller, separate 
models that focus on specific MAC duties. Considering real-time constraints, it may not always be feasible 
to run all models simultaneously, thus ad-hoc protocol stack architectures, such as the recently proposed 
Fast Protocol Stack (FPS) [12], are needed.

But AI also opens the door to paradigm shifts in various MAC domains. Deep schedulers will revolutionize 
wireless product development and testing, enabling the efficient management of advanced radio systems 
while maintaining bounds on the real-time computational load for inference. Their application to 5G-6G 
spectrum sharing also seems promising. ML-based detectors for non-orthogonal preambles are also 
improving rapidly, offering tremendous latency reductions for random access channels. Deep policy-based 
RL seems the tool of choice for learning tailored AMC solutions, and Bayesian methods will optimize large 
network deployments with only a handful of data samples. Customized 6G protocols with low signaling 
overhead will emerge automatically via semantic communications. Attention-based mechanisms will enable 
the effective encoding of large channel matrices for CSI feedback and reduce HARQ overhead with novel 
transformer-based autoencoders. Although the 6G wireless MAC will retain its core responsibilities from 
previous generations, ML-driven approaches will introduce novel ways of development and maintenance, 
facilitating future redesigns. This propels the MAC layer into a realm of unprecedented possibilities and 
sets the stage for groundbreaking advancements in wireless communications.



12 White paper
AI opportunities in 6G Layer 2

Abbreviations
3GPP	 3rd Generation Partnership Project

AI	 Artificial intelligence

AI-AI	 AI air interface

AMC	 Adaptive modulation and coding

APS	 Anchor protocol stack

BLER	 Block error rate

BOGP	 Bayesian optimization with Gaussian processes

BSR	 Buffer status reporting

BTS	 Base transceiver station 

CE	 Control elements

CLPC	 Closed loop power control

CPU	 Central processing unit

CQI	 Channel quality indicator

CSI	 Channel state information

CTDE	 Centralized training with decentralized execution

DDQN	 Double-deep Q-network 

DTC	 Decision-tree calculation

eMBB	 Enhanced mobile broadband

FD	 Frequency domain

FPS	 Fast protocol stack

FR1	 Frequency range 1

HARQ	 Hybrid automatic repeat request

InF	 Indoor factory

JCAS	 Joint communications and sensing

L2	 Layer two

LCID	 Logical channel ID

MAC	 Medium access control

MAPPO	 Multi-agent proximal policy optimization	

MARL	 Multi-agent reinforcement learning

MCS	 Modulation and coding scheme

MIMO	 Multiple input multiple output 
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ML	 Machine learning

mMTC	 Massive machine-type communications

MNO	 Mobile network operator

MRSS	 Multi-RAT spectrum sharing

MU-MIMO	 Multi-user MIMO

OFDMA	 Orthogonal frequency-division multiple access

OLLA	 Outer loop link adaptation

OLPC	 Open loop power control

PDU	 Protocol data units

PF	 Proportional fair (scheduler)

PHR	 Power headroom reporting

PHY	 Physical layer

PPO	 Proximal policy optimization

QoS	 Quality of service

RA	 Random access

RACH	 Random access channel

RAN	 Radio access network

RL	 Reinforcement learning

SAC	 Soft-actor critic

SDPC	 Soft-dropping power control

SINR	 Signal-to-interference-and-noise ratio

SOHO	 Small office, home office

TA	 Timing advance

TD	 Time domain

TTI	 Transmission time interval

UE	 User equipment

URLLC	 Ultra-reliable low latency communications
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